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Abstract. The strong-perturbation theory is employed to calculate the energy levels of a 
hydrogen-like system at the surface in a constant magnetic field of arbitrary strength. The 
applied magnetic field is taken to be normal to the boundary surface. Using the parabolic 
coordinate system, we obtain the analytic expression of levels depending on the parameter 
7 which represents the magnetic field strength. The numerical results are given. 

1. Introduction 

The problem of the energy levels of a hydrogen-like system in a constant magnetic field 
has been a topic of interest for many years. It has become of increasing relevance in 
astrophysics; it is also of interest in semiconductor physics where typical values of the 
effective mass m* and dielectric constant E make the effective Rydberg constant R” 
about 10‘ times smaller than for the free hydrogen atom. In particular. the magneto- 
absorption of semiconductors has received great attention because it can provide impor- 
tant information about the electronic band structure of these materials. This problem 
has been investigated by numerous workers. In the high-field limit the adiabatic approxi- 
mation has been found appropriate (Boyle and Howard 1961, Elliott and Loudon 1960, 
Simola and Virtamo 1978, Friedrich 1982, Hasegawa and Howard 1961, Wunner et a1 
1981, Rosner et ai 1981). Other researchers have favoured the use of the variational 
method and the perturbation theory (Yafet et a1 1956, Calib et a1 1971, Cohen and 
Herman 1981, Ruder et a1 1981, Aldrich and Greene 1979, Hylton and Rau 1980, 
Praddaude 1972, Makado 1985, Makado and McGilll986). 

Recently, a strong-perturbation theory has been proposed by Jiang (1987). This 
method has been shown to be effective for any strength of perturbation. We use this 
method to study the ground state of a hydrogen-like atom at the surface of semi-infinite 
crystal in a uniform magnetic field of arbitrary strength. We obtain an analytic expression 
and numerical results. 
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2. Theory and results 

Consider a semi-infinite isotropic crystal occupying the z 3 0 half-space and with a 
surface coincident with the xy plane. Let a donor impurity be at the origin with an extra 
positive charge in the nucleus. An extra electron is at an arbitrary point r in the z 2 0 
half-space. Let this system be placed in a constant magnetic field of arbitrary strength. 
In the isotropic effective-mass approximation the Hamiltonian for the hydrogen atom 
located at the surface of a semi-infinite crystal in the presence of a constant magnetic 
field is 

H = (1/2m*)[p + (e/c)A)’ - e 2 / u  2 2 0  ( 1 )  
where A is the vector potential, -e and m* are the electronic charge and effective mass 
respectively, and E is the isotropic static dielectric constant inside the isotropic crystal. 
We assume that the potential function is infinite for z C 0. If we choose as usual the 
cylindrical gauge, 

A = h(B X r )  (2) 
where B is the applied magnetic field, and using a cylindrical coordinate system (p ,  q , z )  
where the magnetic field is applied along the z direction, the Hamiltonian can be 
expressed as 

H = -V2  - 2 / r  - iqa/aq + f q 2 p 2 .  (3) 
Here we have used the effective Bohr radius a* = aoEmo/m* as our unit of length and 
the effective Rydberg constant R* = R,,m*/moE2 as our unit of energy, where mo is the 
free-electron mass, and Ro and a. are the hydrogen Rydberg constant and the Bohr 
radius, respectively. For a typical semiconductor such as GaAs ( E  = 12.5; m* = 
0.067mo), we have a* = 98.7 8, and R* = 5.83 meV. q is a dimensionless parameter 
which is a measure of magnetic field: 

q = hoC/2R* (4) 
where w, = Be/m*c is the cyclotron frequency of a free carrier in the field B. We can 
rewrite the Hamiltonian as 

H = H , + V ’  ( 5 )  

where 

H I  = -V2  - 2 / r  - iq d / a q ,  

V’ = q2p2/4 

and r = (p2 + z ~ ) ’ / ~ ,  p = ( x 2  + Y ~ ) ’ / ~ ,  p being the distance in the xy plane. 
The Schrodinger equation of the system is 

Hli, = Eli,. ( 8 )  
We shall use the strong-perturbation theory proposed by Jiang (1987) to solve the 
Schrodinger equation. Because H1 commutes with H o  = -V2  - 2/r ,  i.e. [ H l ,  Ho] = 0, 
they have simultaneous functions. For the hydrogen-like atom at the surface of a semi- 
infinite crystal, their simultaneous function is 

Go = G n l m ( r ,  07 9) 1 + m = odd (9) 
and is called the Levine (1965) wavefunction. 
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We introduce a factor 

f = exp(-g> 
into the wavefunction and assume that 

V = N f @ ( ) ,  

where N is a normalisation constant. Substituting equation ( 1 1 )  into (8), we obtain 

We chose g in such way that 
p g / *  - VZg = V' - q = - :qzp2 - q.  

fH@" = Ef@" 

H = H , + ~ + H '  

Then, from equations (9 ) - (12 ) ,  we have 

where 

and 

H(/  = H ,  + q = - V 2  - 2 / r  + q - iq 8 / 8 q  

H' = 2Vg * V .  

We can use equation (14 )  to solve the energy E .  Note that f l  and H' only operate on 
@"; the function g can be solved from equation (13 )  with the initial conditions 

V' = 0 g = o  v g  = 0 .  (18) 
Equation (18 )  is deduced from the condition that H q  = fH:@' when V' = 0 ( q  = 0). 
The wavefunction y already includes the term f = exp(-g) which connects it to V' 
through equation (13 ) ;  after this transformation, the perturbation theory is applicable 
even if the perturbation is very large. 

In the non-degenerate case, we have 

where EL'?, is the  zeroth-order energy and E!,',?, is the first-order perturbation energy. 
Combining equation (13) with the initial conditions q = 0, g = 0 and V g  = 0 ,  we have 
g = qp2/4 and 

f = exP(-vP2/4). 
The wavefunction 21, and H' are  given by 

and 
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H' = 2Vg * V = ~p d/dp.  (24) 

EL%? = (@,l~"jlmhn) = -1 /n2  + 11 + my. (25)  

@ r l o  = (1/32n)'/*rcos eexp(-r/2) (26) 

q ~ ~ ~ ~ )  = Nexp(-yp'/4 - r/2)(1/32n)1"rcos 8 (27) 

(28) 

From equations (19) and (16), we can obtain 

We discuss the results for only the ground state here. For the ground state, 

To perform the integration, we change to the parabolic coordinates ayI and az;  let 

a ,  = r + z = (1 + cos 8 ) r  

a2 = r - z = (1 - cos e ) r  
(29a) 

(29b) 

and we have 

da ,  d a z  = 2r sin 8 dr d 8  

alayZ = r 2  sin2 6 

( a ,  + a,)/" = r .  

Substituting (29)-(31) into (28), we obtain 

x [(-I a + a  
- ala2------] a ,  + a2 d a ,  da2. 

2 

Using (24) and (26), we obtain 

H'@210 = -b(1/32n)'/*y(p2/r)z exp( -r/2). 

Substituting (22), (26), (33) and (34) into (20), we find that 

If we let 

(33) 

(34) 
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Table 1. Energies of the hydrogen-like atom at the surface of a semi-infinite crystal in a 
uniform magnetic field. 

E" = 

II N-=  E Y lo E($)" = - f  + E';), + E':)" 

0.05 0.3395 -0.13617 -0.20 -0.336 
0.1 0.6510 -0.02884 -0.15 -0.179 
0.2 0.4963 -0.02647 -0.05 -0.076 
0.3 0.4045 -0.02227 0.05 0.028 
0.4 0.3428 -0.01863 0.15 0.131 
0.5 0.2982 -0.01573 0.25 0.234 
0.7 0.2375 -0.01160 0.45 0.438 
0.9 0.1978 -0.00891 0.65 0.641 
1.0 0.1827 -0.00791 0.75 0.742 
1.5 0.1325 -0.00479 1.25 1.245 
2.0 0.1042 -0.00323 1.75 1.747 
3.0 0.7320 -0.00177 2.75 2.748 
4.0 0.5648 -0.00172 3.75 3.748 
5.0 0.4601 -0.00078 4.75 4.749 

10.0 0.2391 -0.00023 9.75 9.750 
20.0 0.1221 -0.00007 19.75 19.750 
30.0 0.8203 -0.00003 29.75 29.750 
40.0 0.6176 -0.00002 39.75 39.750 
50.0 0.4952 -0.00001 49.75 49.750 

100.0 0.2488 -0.00001 99.75 99.750 

where 
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hydrogen-like system at the surface of semi-infinite semiconductor in a constant magnetic 
field of arbitrary strength are obtained for the first time. Here we used a very simple 
calculation, only to the first order of energy; nevertheless the results are very reasonable. 
For example, table 1 indicates that, for 11 > 10, namely at very high fields, the binding 
effect of the magnetic field in the xy plane is so large that the energy of the system is 
determined by the Landau energy nearly totally. 
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